Algebra 1 Mississippi College- and Career-Readiness Standards for Ma	thematics		
RCSD Quarter 1 (enVision Suggestion)	T	1	<u> </u>
Standard	Common Core Alg.	enVision	Focus
N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems;	Chapter 1, 2-6, 2-7		
choose and interpret units consistently in formulas; choose and interpret the scale and the origin in		1-4	
graphs and data displays.			
N-Q.2 Define appropriate quantities for the purpose of descriptive modeling.	Chapter 1, 2-6, 4-5	1-3	
N-Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Chapter 1, 2-10	6-3	
F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative	Chapter 1, 4-4	3-2, 3-3, 6-2, 10-3	Linear
relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to			
assemble n engines in a factory, then the positive integers would be an appropriate domain for the			
function.★			
A-SSE.1 Interpret expressions that represent a quantity in terms of its context.★	Chapter 1	1a: 7-5, 7-6, 7-7	Linear
a. Interpret parts of an expression, such as terms, factors, and coefficients.			
b. Interpret complicated expressions by viewing one or more of their parts as a single entity.		1b: 6-3, 7-5, 7-6,	
For example, interpret $P(1+r)^n$ as the product of P and a factor not depending on P .		7-7	
A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as	Chapter 1 & 8	7-4, 7-7, 9-4	No
$(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.			factoring
A-APR.1 Understand that polynomials form a system analogous to the integers, namely, they are	Chapter 1 & 8	7-1, 7-2, 7-3, 7-4	Linear
closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply			
polynomials.			
A-REI.1 Explain each step in solving a simple equation as following from the equality of numbers	Chapter 2	1-2, 1-3	
asserted at the previous step, starting from the assumption that the original equation has a solution.			
Construct a viable argument to justify a solution method.			
A-REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients	Chapter 2 & 3	1-2, 1-3, 1-5, 1-6	
represented by letters.			
A-REI.10 Understand that the graph of an equation in two variables is the set of all its solutions	1-9, Chapter 2 & 3,	2-1, 2-2, 2-3, 9-1	Linear
plotted in the coordinate plane, often forming a curve (which could be a line).	4-2, 4-3		
A-CED.1 Create equations and inequalities in one variable and use them to solve problems. <i>Include</i>	1-8, Chapter 2 & 3	1-2, 1-3, 1-4, 1-5,	Linear
equations arising from linear and quadratic functions, and simple rational and exponential		1-6, 1-7, 9-1, 9-4,	
functions.★		9-6	
A-CED.2 Create equations in two variables to represent relationships between quantities; graph	1-9, Chapter 4,	2-1, 2-2, 2-3, 2-4,	Linear
equations on coordinate axes with labels and scales.★	5-2, 5-5, Chapter 6	6-3, 8-1, 9-1	
A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving	2-5, Chapter 4 & 6	1-4	
equations. For example, rearrange Ohm's law $V = IR$ to highlight resistance $R.\bigstar$			
F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative	4-4, Chapter 1		Linear

relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \bigstar			
F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ a. Graph functions (<i>linear</i> and quadratic) and show intercepts, maxima, and minima.	5-3, Chapter 4	3-3, 8-2	Linear
F-BF.1 Write a function that describes a relationship between two quantities. ★ a. Determine an explicit expression or steps for calculation from a context.	1-8, Chapter 5	3-3, 3-4, 6-2, 8-4	Linear

[★]These standards are specific modeling standards.

Algebra 1 Mississippi College- and Career-Readiness Standards for Mat	thematics		
RCSD Quarter 2 (enVision Suggestion) Standard	Common Core Alg.	enVision	Focus
A-CED.1 Create equations and inequalities in one variable and use them to solve problems. <i>Include</i> equations arising from linear and quadratic functions, and simple rational and exponential functions. *	Chapter 6 & 7	1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 9-1, 9-4, 9-6	Exponential
A-CED.2 Create equations in two variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. ★	Chapter 6 & 7	2-1, 2-2, 2-3, 2-4, 6-3, 8-1, 9-1	Exponential
A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.★	Chapter 4 & 6	1-5, 1-6, 2-3, 4-2, 4-3, 4-4, 4-5	
A-REI.5 Given a system of two equations in two variables, show and explain why the sum of equivalent forms of the equations produces the same solution as the original system.	Chapter 6	4-3	
A-REI.6 Solve systems of linear equations algebraically, exactly, and graphically, while focusing on pairs of linear equations in two variables.	Chapter 6	4-1, 4-2	
A-REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Chapter 6	4-4, 4-5	
F-IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input f . The graph of f is the graph of the equation f is	4-6, Chapter 5 & 7	3-1, 3-2	
F-IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	Chapter 5 & 7	3-2, 8-4	
F-IF.3 Recognize that sequences are functions whose domain is a subset of the integers.	4-7, Chapter 5 & 7	3-4, 6-4	
F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★</i>	4-2, 4-3, Chapter 5 & 7	5-1, 5-2, 5-3, 6-2, 6-5, 8-3, 10-1, 10-2, 10-3, 10-4	Linear and exponential
F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★	Chapter 4		Exponential
F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★	Chapter 5 & 7	5-1, 5-2, 5-3, 6-2, 8-1, 10-1, 10-2, 10-4	Linear & Exponential
F-BF.1 Write a function that describes a relationship between two quantities.★	Chapter 7	3-3, 3-4, 6-2, 8-4	Exponential

a. Determine an explicit expression or steps for calculation from a context.			
F-LE.1 Distinguish between situations that can be modeled with linear functions and with exponential	5-1, Chapter 7	1a: 6-2	
functions.★			
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential		1b: 3-4	
functions grow by equal factors over equal intervals.			
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to		1c: 6-3	
another.			
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval			
relative to another.			
F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given	Chapter 5 & 7	2-2, 3-2, 3-4, 6-3,	
a graph, a description of a relationship, or two input-output pairs (include reading these from a		6-4	
table).★			
F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context.	Chapter 5 & 7	6-3	

[★]These standards are specific modeling standards.

Algebra 1 Mississippi College- and Career-Readiness Standards for N RCSD Quarter 3 (enVision Suggestion)	lathematics		
Standard	Common Core Alg.	enVision	Focus
A-REI.4 Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^2=q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions.	Chapter 8 & 10	4a: 9-5, 9-6 4b: 9-1, 9-2, 9-4, 9-6	
A-REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	Chapter 6	2-1, 2-2, 2-3, 9-1	Exponential & Quadratic
A-REI.11 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, quadratic, absolute value, and exponential functions.	Chapter 5, 7, & 9	9-1, 9-7	
F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★</i>	Chapter 9	5-1, 5-2, 5-3, 6-2, 6-5, 8-3, 10-1, 10-2, 10-3, 10-4	Other functions besides linear & exponential
F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★	Chapter 9		Quadratic
F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★	Chapter 7 & 9	5-1, 5-2, 5-3, 6-2, 8-1, 10-1, 10-2, 10-4	Quadratic
F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ a. Graph functions (linear and <i>quadratic</i>) and show intercepts, maxima, and minima. b. Graph <i>square root</i> and <i>piecewise-defined functions</i> , including <i>absolute value functions</i> .	7-6, Chapter 9 & 10	3-3, 8-2	Quadratic, square root, & absolute value
F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros,	7-7, Chapter 9	8-3	

extreme values, and symmetry of the graph, and interpret these in terms of a context.			
F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	Chapter 9	5-4, 6-5, 8-3	
F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k $f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. <i>Include recognizing even and odd functions from their graphs and algebraic expressions for them.</i>	5-8, Chapter 9	3-4, 6-4	
N-RN.3 Explain why the sum or product of two rational numbers is rational; the sum of a rational number and an irrational number is irrational; and the product of a nonzero rational number and an irrational number is irrational.	Chapter 1, 8, & 10	1-1	
A-SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	Chapter 8 & 10	7-4, 7-7, 9-4	
A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. \bigstar c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15 ^t can be rewritten as $(1.15^{1/12})^{12t} \approx 1.01212^t$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	Chapter 8 & 10	6-3	
A-APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Chapter 8	7-1, 7-2, 7-3, 7-4	Quadratic
A-APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial (limit to 1st- and 2nd-degree polynomials).	Chapter 8 & 10	9-2	
A-CED.1 Create equations and inequalities in one variable and use them to solve problems. <i>Include</i> equations arising from linear and quadratic functions , and simple rational and exponential functions.★	3-7, Chapter 4 & 6		Quadratic & Simple Rational
A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. ★	Chapter 9	2-1, 2-2, 2-3, 2-4, 6-3, 8-1, 9-1	Quadratic

[★]These standards are specific modeling standards.

Algebra 1 Mississippi College- and Career-Readiness Standards for N	Mathematics		
RCSD Quarter 4 (enVision Suggestion)			
Standard	Common Core Alg.	enVision	Focus
S-ID.1 Represent and analyze data with plots on the real number line (dot plots, histograms, and box	Chapter 12	11-1, 11-2	
plots). *	Classic 42	44.2.44.2.44.4	
S-ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. ★	Chapter 12	11-2, 11-3, 11-4	
S-ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). ★	Chapter 12	11-2, 11-3, 11-4	
S-ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative	Chapter 4, 5, 8, & 9	11-5	
frequencies in the context of the data (including joint, marginal, and conditional relative			
frequencies). Recognize possible associations and trends in the data.★			
S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.★	5-7, Chapter 8 & 9	6a: 3-5, 3-6, 8-4	
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.		6b: 3-6, 8-4	
Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and			
exponential models. ⁶		6c: 3-5, 3-6	
b. Informally assess the fit of a function by plotting and analyzing residuals.			
c. Fit a linear function for a scatter plot that suggests a linear association.			
S-ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the	Chapter 4, 5, 8, & 9	2-1, 2-2, 2-3, 3-5	
context of the data.★			
S-ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.★	Chapter 4, 5, 8, & 9	3-6	
S-ID.9 Distinguish between correlation and causation.★	Chapter 4, 5, 8, & 9	3-6	

[★]These standards are specific modeling standards.