Grade 7 Compacted Mississippi College- and Career-Readiness Standards for Mathematics RCSD Quarter 1	
Standard	
7.NS. 1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d. Apply properties of operations as strategies to add and subtract rational numbers.	Rational Numbers Topic 1
7.NS. 2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real- world contexts. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.	Rational Numbers Topic 1
7.NS.3 Solve real-world and mathematical problems involving the four operations with rational numbers.	Rational Numbers Topic 1
8.NS. 1 Understand informally that every number has a decimal expansion; the rational numbers are those with decimal expansions that terminate in 0's or eventually repeat. Know that other numbers are called irrational.	Real Numbers Topic 2
8.NS. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$ shows that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.	Real Numbers Topic 2
8.EE. 1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=$ 1/27.	Real Numbers Topic 2
8.EE. 2 Use square roots and cube roots to represent solutions to equations of the form (x) squared=p and (x) cubed=p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that the square root of 2 is irrational.	Real Numbers Topic 2
8.EE. 3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to	Real Numbers

| express how many times as much one is than the other. For example estimate the population of the United States as 3×10^{8} and the population
 of the world as 7×10^{9}, and determine that the world population is more than 20 times larger. | Topic 2 |
| :--- | :--- | :--- |
| 8.EE. Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are
 used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters
 per year for seafloor spreading). Interpret scientific notation that has been generated by technology. | Real Numbers
 Topic 2 |
| 7.EE. 1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. | Equivalent
 Expressions
 Topic 5 |
| 7.EE. 2 Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in
 it are related. For example, a + 0.05a = 1.05a means that "increase by 5\%" is the same as "multiply by 1.05." | Equivalent
 Expressions
 Topic 5 |
| 8.F.3 (introduced) Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that
 are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains
 the points (1,1), (2,4), and (3,9), which are not on a straight line. ** | Solving
 Multi-step

 Analyzing Linear
 Equations
 Topic 7 |

[^0]| Grade 7 Compacted Mississippi College- and Career-Readiness Standards for Mathematics RCSD Quarter 2 | |
| :---: | :---: |
| Standard | |
| 7.RP. 1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. | Proportional Relationships Topic 3 |
| 7.RP. 2 Recognize and represent proportional relationships between quantities.
 a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
 b Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
 c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
 d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate. | Proportional Relationships Topic 3 |
| 7.RP. 3 Use proportional relationships to solve multistep ratio and percent problems. Example: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error. | Percent Topic 4 |
| 7.EE. 3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. | Equivalent Expressions Topic 5 |
| 7.EE. 4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
 a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.
 b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. | Equations/Inequalities Topic 6 |
| 8.EE. 7 Solve linear equations in one variable.
 a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a$, $a=a$, or $a=b$ results (where a and b are different numbers).
 b. Solve linear equations and inequalities with rational number coefficients, including those whose solutions require expanding expressions using the distributive property and collecting like terms. | Analyze/Solve Linear Equations Topic 7 |

Grade 7 Compacted Mississippi College- and Career-Readiness Standards for Mathematics RCSD Quarter 3	
Standard	
7.G.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	Geometry Topic 10
7.G.2 Draw (freehand, with a ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	Geometry Topic 10
7.G.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	Geometry Topic 10
7.G.4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	Geometry Topic 10
7.G.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	Geometry Topic 10
7.G.6 Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	Geometry Topic 10
8.G.1 Verify experimentally the properties of rotations, reflections, and translations: a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.	Congruence \& Similarity Topic 11
8.G. 2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	Congruence \& Similarity Topic 11
8.G.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	Congruence \& Similarity Topic 11
8.G.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	Congruence \& Similarity Topic 11
8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	Congruence \& Similarity Topic 11
8.G.9 Know the formulas for volume of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems.	Surface Volume Topic 12

Grade 7 Compacted Mississippi College- and Career-Readiness Standards for Mathematics RCSD Quarter 4	
Standard	
8.EE. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	Analyze/Solve Linear Equations Topic 7
8.EE. 6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.	Analyze/Solve Linear Equations Topic 7
7.SP. 1 Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	 Populations Topic 8
7.SP. 2 Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.	 Populations Topic 8
7.SP. 3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.	 Populations Topic 8
7.SP. 4 Use measures of center and measures of variability (i.e., interquartile range) for numerical data from random samples to draw informal comparative inferences about two populations.	 Populations Topic 8
7.SP. 5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	Probability Topic 9
7.SP. 6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency	Probability Topic 9
7.SP. 7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	Probability Topic 9
7.SP.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event. c. Design and use a simulation to generate frequencies for compound events.	Probability Topic 9

8.F. 4 (introduced) Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. ${ }^{* *}$

Analyze/Solve
** introduced only

[^0]: ** introduced only

